Def (1) The <u>nxn</u> identity matrix is the matrix I_n whose columns are the standard basis vectors $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_n}$.

e.g.
$$I_2 = \begin{bmatrix} I & O \\ O & I \end{bmatrix}$$
, $I_3 = \begin{bmatrix} I & O & O \\ O & I & O \\ O & O & I \end{bmatrix}$

- (2) The <u>inverse</u> of an $n \times n$ matrix A is the matrix A^{-1} with $AA^{-1} = A^{-1}A = I_n$.
- Note (1) The inverse of an nxn matrix is an nxn matrix.
 - (2) The inverse of a nonsquare matrix is undefined.
 - (3) We have $I_nA = AI_n = A$ for any $n \times n$ matrix A. (cf. $1 \cdot a = a \cdot 1 = a$ for any $a \in \mathbb{R}$)
 - (4) We often write I in place of I_n .
- $\underline{\text{Def}} \quad \text{(I)} \quad \text{The } \underline{\text{identity transformation}} \quad \text{on } \mathbb{R}^n \text{ is the linear transformation}$ $\mathbb{1}_n : \mathbb{R}^n \longrightarrow \mathbb{R}^n \text{ with } \mathbb{1}_n(\overrightarrow{x}) = \overrightarrow{x}.$
 - (2) The <u>inverse</u> of a linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is the linear transformation $T^{-1}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ with $T \circ T^{-1} = T^{-1} \circ T = \mathbf{1}_n$.
- Note (1) The standard matrix of 1n is In.
 - (2) A linear transformation T has an inverse.

Prop If a linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ with standard matrix A has an inverse T^{-1} , the standard matrix of T^{-1} is A^{-1} . $T \circ T^{-1} = T^{-1} \circ T = \mathbf{1}_n \iff AA^{-1} = A^{-1}A = \mathbf{1}_n.$

Thm A square matrix A has an inverse \iff RREF(A)=I

<u>pf</u> Take the linear transformation T with standard matrix A A has an inverse

 \iff RREF(A) has a leading 1 in every row and column

 \iff RREF(A)=I

 $\frac{\text{Prop}}{\text{Let}} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be an arbitrary 2×2 matrix.

(1) If we have ad-bc=0, then A^{-1} does not exist.

(2) Otherwise, we have $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d-b\\-c a \end{bmatrix}$

 \underline{Prop} Let A be a square matrix with an inverse A^{-1} . If B is the matrix formed by concatenating A and I, then RREF(B) is formed by concatenating I and A^{-1} .

$$B = [A \mid I] \Rightarrow RREF(B) = [I \mid A^{-1}]$$

Ex For each linear transformation, find the standard matrix of its inverse if it exists.

(1) $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which maps $\overrightarrow{e_1}$ to $\overrightarrow{e_1} - 3\overrightarrow{e_2}$ and $\overrightarrow{e_2}$ to $\overrightarrow{e_2}$.

$$\underline{S_0 \setminus} \quad T_1(\overrightarrow{e_1}) = \overrightarrow{e_1} - 3\overrightarrow{e_2} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \quad \text{and} \quad T_1(\overrightarrow{e_2}) = \overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 \Rightarrow The standard matrix of Ti is

$$A' = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

which has an inverse $(1 \cdot 1 - (-3) \cdot D = 1 \neq D)$

 \Rightarrow T, has an inverse with standard matrix

$$A_{i}^{-1} = \frac{1}{1 \cdot 1 - (-3) \cdot D} \begin{bmatrix} 1 & D \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & D \\ 3 & 1 \end{bmatrix}$$

(2) $T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ with

$$T_{2}(\overrightarrow{X}) = \begin{bmatrix} X_{1} - X_{2} \\ -X_{1} + X_{2} \end{bmatrix} \quad \text{for } \overrightarrow{X} = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}$$

Sol The standard matrix of T2 is

$$A_2 = \begin{bmatrix} I & -I \\ -I & I \end{bmatrix}$$

which does not have an inverse $(1 \cdot 1 - (-1) \cdot (-1) = D)$

 \Rightarrow T₂ does not have an inverse

(3) $T_3: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which reflects each vector through the x-axis.

$$T_3(\overrightarrow{e_1}) = \overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $T_3(\overrightarrow{e_2}) = -\overrightarrow{e_2} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

 \Rightarrow The standard matrix of T₃ is

$$A^3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

which has an inverse $(1\cdot(-1)-D\cdot D=-1\neq D)$

 \Rightarrow T3 has an inverse with standard matrix

$$A_{3}^{-1} = \frac{1}{1 \cdot (-1) - O \cdot O} \begin{bmatrix} -1 & O \\ O & I \end{bmatrix} = \begin{bmatrix} 1 & O \\ O & -I \end{bmatrix} (= A_{3})$$

Note In fact, if $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a reflection through a line, it is invertible with $T^{-1} = T$.

- (4) $T_4: IR^2 \longrightarrow IR^2$ which rotates each vector about the origin through $\frac{\pi}{4}$ radians
 - Sol The standard matrix of T4 is

$$A_4 = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \begin{bmatrix} 1/\sqrt{12} & -1/\sqrt{12} \\ 1/\sqrt{12} & 1/\sqrt{12} \end{bmatrix}$$

which has an inverse $(\sqrt{2}\cdot\sqrt{2}-(-\sqrt{2})\cdot\sqrt{2}=1\pm0)$

 \Rightarrow T4 has an inverse with standard matrix

$$A_{4}^{-1} = \frac{1}{\sqrt{\sqrt{2} \cdot \sqrt{\sqrt{2}} - (-\sqrt{\sqrt{2}}) \cdot \sqrt{\sqrt{2}}}} \begin{bmatrix} \sqrt{\sqrt{2}} & \sqrt{\sqrt{2}} \\ -\sqrt{\sqrt{2}} & \sqrt{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\sqrt{2}} & \sqrt{\sqrt{2}} \\ -\sqrt{\sqrt{2}} & \sqrt{\sqrt{2}} \end{bmatrix}$$

Note In fact, if $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a rotation about the origin through θ radians, it is invertible with T^{-1} being the rotation about the origin through $-\theta$ radians.

O rads clockwise

 $T \circ T^{-1} = T^{-1} \circ T = 1$ (rotation through $\theta - \theta = 0$ radians)

(5) $T_5: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with standard matrix

$$A_{5} = \begin{bmatrix} 2 & 0 & 3 \\ 1 & 2 & 2 \\ 0 & 3 & 1 \end{bmatrix}$$

Sol Take the matrix formed by concatenating A5 and I.

$$\begin{bmatrix} 2 & 0 & 3 & | & 1 & 0 & 0 \\ | & 2 & 2 & | & 0 & | & 0 \\ | & 0 & 3 & | & 0 & 0 & | \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} | & 0 & 0 & | & -4 & 9 & -6 \\ | & 0 & | & 0 & | & -1 & 2 & -1 \\ | & 0 & 0 & | & 3 & -6 & 4 \end{bmatrix}$$

$$A_{5} \qquad I \qquad RREF(A_{5}) = I \qquad A_{5}^{-1}$$

 A_5 has an inverse $(RREF(A_5) = I)$

 \Rightarrow T5 has an inverse with standard matrix

$$A_{5}^{-1} = \begin{bmatrix} -4 & 9 & -6 \\ -1 & 2 & -1 \\ 3 & -6 & 4 \end{bmatrix}$$

(6) $T_6: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with standard matrix

$$A_6 = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & -3 \\ 1 & 1 & -1 \end{bmatrix}$$

Sol Take the matrix formed by concatenating Ao and I.

$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 3 & 2 & -3 & 0 & 1 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & -2 \\ 0 & 1 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 & -1 & 2 \end{bmatrix}$$

$$A_6 \qquad I \qquad RREF(A_6)$$

 A_6 does not have an inverse (RREF(A_6) $\neq I$)

$$\Rightarrow$$
 T₆ does not have an inverse